
@ Fermi National Accelerator Laboratory 

FERMILAB-Pub-81/46-THY 
May 1981 

Hyperfine Splittings in Heavy Quark Systems 

W. BUCHMijLLER 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois 60510 

YEE JACK NC* 
Institute of Field Physics, Department of Physics and Astronomy 
University of North Carolina, Chapel Hill, North Carolina 27514 

S.-H.H. TYE 
Newman Laboratory of Nuclear Studies 

Cornell University, Ithaca, New York 14853 

(Received 

ABSTRACT 

The hyperfine splittings in heavy quark systems are calculated to 4th order in 

the strong coupling constant. The hypothesis, that spin-spin interactions are 

dominated by short distances, is shown to be self-consistent. The ‘I’- nc mass 

difference is compatible with the range of the QCD scale parameter A expected on 

the basis of QCD-like potential models. From the T -nb mass difference we 

expect a determination of A with an uncertainty of about f 100 MeV. 
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Non-relativistic bound state spectroscopies (such as hydrogen atom, positro- 

nium etc.) have provided invaluable tools to guide us in our understanding of 

quantum mechanics and quantum electrodynamics. They also allow us to determine 

accurately the fine structure constant and the electron mass. Non-relativistic 

bound systems are even more important in quantum chromodynamics (QCD) since 

there are no free quarks or free gluons upon which direct measurements can be 

performed. Although our present understanding of the large distance behavior of 

QCD is still far from complete, quarkonia (i.e. heavy quark-antiquark bound 

systems) can provide an accurate determination of the scale parameter A and heavy 

quark masses in QCD.le3 This is possible only after care is taken to separate the 

short distance effects from the large distance effects. We argue that this can be 

achieved for the hyperfine splitting. Here we present the result of the complete 

one-loop calculation for the hyperfine splitting of heavy quark systems. The result 

is then applied to the Y and T spectroscopies. 

To lowest order in perturbative QCD, the hyperfine splitting4 is given by 

HHFS = ‘; 3 3,.:, C2(R) I$@) I2 , 
m 

(I) 

where cts = g2/(4r) and m is the quark mass; 5, and z2 are the spins of the quark and 

the antiquark. The group factor C2(R) = 4/3. The splitting is proportional to the 

bound state wavefunction at the origin. Thus the spin force, which is responsible 

for the hyperfine splitting, is short-ranged. As we shall see, this force remains 

short-ranged even after the one-loop corrections have been incorporated. For the 

wave function at short distances we need the quarkonium potential which, however, 

can be accurately determined via a phenomenological approach. 235 Hence we 

believe that perturbative QCD is applicable to calculate the hyperfine splitting. 
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This is in contrast to the fine structure (e.g. the splitting of the P states), where 

the responsible spin-dependent force extends to large distances. Consequently, the 

fine structure is more sensitive to the nature of the confining force and the result 

derived from perturbative QCD may be unreliable in this case. 

The calculation is carried out in two steps. We first calculate, in momentum 

space, the effective Hamiltonian, AH, which governs the spin-spin interaction of a 

quark-antiquark pair with on-shell mass m. In the second step we obtain the 

hyperfine splittings AE by evaluating expectation values of the Fourier transform 

of AH with the bound state wavefunctions given in Ref. 2. The Feynman diagrams 

which contribute to AH are shown in Fig. 1. This set of graphs is necessarily gauge 

invariant as can be easily checked. The results for the individual diagrams given 

below refer to the Feynman gauge. We have used dimensional regularization for 

ultraviolet divergences, and a small gluon mass X to regularize infrared 

divergences. The result reads 

(0) 
AH : 8R ‘L 

3 C (R&*S; 
m2 ’ 

(2) 

where cxs(‘) IS the unrenormalized strong fine structure constant. The first term 

arises from Fig. la, and the various one-loop contributions are given by 

K (0) (lb) = ;c,(C) ; 
r [ 

g + In (4n)- yE - In 

- & T(R)Nf 
I[ 

g g+ In (4~11~ yE - In ($)]+q , (3) 

K(O)(lc + Id) = - $ C2(R) -i C,(G) 
(3 2 (9 +Sln( ($1 ’ (4) 

A _ 1 In 
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K(‘)(le + If) = C2(R) -{C,(C) $ + In (4~) - yE -In ($)+6+2!n( $2)/, (5) 

K 
(0) 1 

(Ig) = iSC2(G) $+ln(4~)-yE-ln (5) +i] +2 1n(Q-J2) +z/ ,(6) 

K(‘)(lh + Ii) = & C2(R)[I In 21 , (7) 

where we have dropped terms of order Q2/m2. E = 4 - D for D space-time 

dimensions, p is the renormalization scale, Q the modulus of the space-like 

momentum transfer, y q 0.5772... the Euler constant, Nf the number of massless 

quark flavors, and in QCD the group factors read T(R) = K, C,(C) = 3. In Eq. (4) the 

“l/v-singularity,” which arises from Fig. Ic has been dropped in the standard 

manner. Summing Eqs. (2) - (7) we obtain 

AH = 8~ ‘Et’) am(u) 

3 
m 

2 C2(R)s;* :, 1 + n K 

with 

I 
K q n (1 - 9 In 2) C2(R) + g C,(G) - ; T(R) Nf 

, (83) 

t (8b) 

- & [ 11 C,(G) - 4T(R) Nf 1 In + g C,(G) In 

where we have used the m-scheme’ which absorbs the pole term as well as the 

constant (In (4~) - y,) into the definition of the renormalized, scale dependent 

coupling constant a&u). As expected, the infrared divergences which appear in 

Eqs. (4) and (5) have cancelled in the sum Eq. (8b). The existence of the In (Q2/m2) 

contribution in Eq. (8b) was first pointed out by Dine.8 However, results quoted in 
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literature8-to for the coefficient of this term, disagree mutually with one another 

and with Eq. (8). We note that a complete evaluation of the 4th order hyperfine 

splitting is necessary in order to determine the scale parameter A. 

The effective Hamiltonian Eq. (8) does not include possible non-perturbative 

effects (except for those which can be absorbed into the potential and thereby 

influence the wave function at short distances). In particular we assume that the 

energy shift of the pseudoscalar state due to the U(1) anomaly 
II 

is negligible. This 

assumption can eventually be tested in a quarkonium system where quark and 

antiquark carry different flavor (e.g. (bS), (t6) etc). In this case, the effective 

Hamiltonian is given by (m, and m2 are quark mass and antiquark mass 

respectively) 

Afi = 2 ;~;;)C2(R);,.;2 {t +oq(u) i} , @a) 

with 

3 ml+m 2 
8 ml -m2 In C2(G) - $ T(R) Nf 

-b [II C,(G) 4T(R)Nf lln + g C,(G) In . (9b) 

Note that the annihilation diagrams (Figs. (lh), (Ii)) do not contribute in Eq. (9). 

Equations (8) and (9) represent our final results. 

In the equal-mass case Eq. (8b) yields 

K = 0.563 + 2.25 In + 0.375 In , for Nf = 3 

and 
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K = 0.286 + 2.08 In + 0.542 In , for Nf =4 . (IO) 

From Eqs. (8) and (IO) one obtains hyperfine splittings AE by evaluating the appro- 

with 

priate expectation values, 
12 

E = 32n a%(v) < 1 > 1 + a%;is(p’) 
T m2 

C TI Eh, 5) 3 , 

<l> q [o(o)12 , , 

E(LI,~ ) = 0.563 + 2.25 In + 0.375 5 , Nf = 3 t 

E(u,~) = 0.286 + 2.08ln + 0.542 5 , Nf = 4 ; 

4(O) is the wave function in coordinate space at : = b. The quantities 1 e(O) I2 and 

5 have to be evaluated in a specific potential model. From Ref. 2 we obtain I3 for 

J/Y and T: 5(Y) = 0.56, 5 (T) = -0.26. These values are so small that their 

contribution to the hyperfine splitting given in Eq. (II) can be neglected 

phenomenologically. The smallness of 5 for Y and T shows that momentum 

transfers of order m dominate the hyperfine splittings in both cases. Thus the 

appropriate number of flavors is Nf = 3 for Y and Nf = 4 for T. 

From the hyperfine splitting, the leptonic widthsI of the vector state, and 

the hadronic widthI of the pseudoscalar state we can form the ratios r, and r2 

which are independent of the wave function at short distances, and hence, any 

particular potential model that is used, 

(Ila) 

(Ilb) 

(Ilc) 
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i 

am(m) 1 + 5.9 C 
alF;Shd 

ll 1 , Nf=3 

922 “E= 
‘I E ZeaEM TV (12) 

ee 
am(m) [I + 5.6 a$m’] , Nf=4 

r ps 
r2Ei--!$ = 

a&m)[I + 4.7 a$m)] , Nf = 3 

(13) 

ars;iS(m) 1 + 4.6 
a&m) 

TI 1 , PifZ4 

where e and aEM are the quark charge and the electromagnetic fine structure 

constant respectively. Experimentafly,15 the hadronic width of the nc is known 

only with large errors. Using I” .,(Y) = 4.8 + 0.6 keV and AE( Y - n,) = 119 + 9 MeV, 

we obtain from the ratio rI (Nf = 3) 

Am = 0.41 t 0.07 GeV , 

using the wave functions of Ref. 2L6 and Eq. (11) one obtains (Nf = 3) 

AK = 0.38 k 0.03 GeV 

In both cases only the experimental uncertainties are given. 

We conclude with the following remarks: 

(i) The hypothesis, that the hyperfine splittings of heavy quark systems are 

dominated by short distance effects, is self-consistent. The smallness of the 

parameter 5 indicates that in the Y and T families the relevant distances are of the 

order of the quark compton wavelength. 

(ii) Contrary to the radiative corrections to the van Royen-Weisskopf formula 

the one-loop contribution to the hyperfine splitting is small ! This result has been 
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anticipated 2,4 on the basis of QCD-like potential models and provides further 

evidence for a short distance behavior of the quark-antiquark potential as predicted 

by perturbative QCD. 

(iii) The Y - n c mass difference gives a scale parameter AK* 0.4 GeV, 

compatible with the range of scale parameters Am = 0.2 - 0.5 GeV, which has been 

considered in connection with the Y and T spectroscopies.’ However, a more 

precise determination of A from the hyperfine splittings in the Y system is not 

possible due to theoretical uncertainties such as relativistic and higher order 

radiative corrections, scheme dependence, etc. All these corrections and 

ambiguities will be much less important in the T spectroscopy, and we expect a 

determination of the scale parameter A within f 100 MeV. The predictions for the 

T - rl b mass difference and the ratios r1 and r2 are shown in Fig. 2 as functions of 

Am 

(iv) Perturbative QCD predicts various quantities of the T spectroscopy, such 

as hyperfine splittings, electromagnetic and hadronic decay widths, etc. Thus the 

experimental measurement of the parameters of the T family will provide stringent 

tests of the fundamental theory of strong interactions. The detailed comparison of 

the various quantities will also shed light on the theoretical approximations and 

uncertainties, and in particular elucidate the influence of nonperturbative effects. 
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Fig. 1: 

Fig. 2: 

FIGURE CAPTIONS 

Feynman diagrams contributing to the hyperfine splitting to 

4th order in the strong coupling constant. 

T - n b system. The hyperfine splitting AEE(T- nb) and the 

ratios rI = s 9 e2agMAE/I’le and r2 = i r [:d/AE (see text). For 

the hyperfine splitting the wave functions of Ref. 216 have 

been used. 
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